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ABSTRACT 

This paper presents an integration approach to 
estimate temperature-dependent thermal 
conductivity in a transient non-linear heat 
conduction medium without internal 
measurements. The unknown thermal 
conductivity is assumed to vary linearly with 
respect to temperature. The integration approach 
to the inverse heat conduction problem requires 
the time-dependent temperature distribution that 
is not given a priori. For a one-dimensional heat 
conduction medium with a heated and an 
insulated wall, this study approximates the spatial 
temperature distribution as a polynomial with 
unknown coefficients, which satisfy four known 
boundary data (two prescribed heat fluxes and 
two measured temperatures) and the energy 
conservation. The integral heat conduction 
equations are solved to determine the unknown 
coefficients. Some numerical examples are 
introduced to show the performance of the 
proposed approach. 

 
INTRODUCTION 

The inverse heat conduction problem (IHCP) 
has been received much attention from many 
investigators due to practical importance and 
mathematical interest [1-12]. The determination 
of thermal properties from temperature 
measurements is a typical IHCP. In this paper we 
present an approach to estimate the thermal 
conductivity. In most practical applications, the 
thermal conductivity is dependent on the 

temperature and it may be assumed to vary 
linearly with respect to temperature within the 
range of interest. Then, the present IHCP 
becomes an inverse problem to estimate the 
unknown coefficients of the functional form of 
thermal conductivity that is set to vary linearly 
with temperature. Namely, the present IHCP can 
be classified into a coefficient identification 
problem.  

Many researchers have been interested in the 
IHCP to determine the temperature-dependent 
thermal conductivity under the condition that the 
heat capacity per unit volume is a known constant.  
A number of methods, consequently, have been 
developed to solve such IHCPs [3-10]. Most of 
them adopted the nonlinear optimization 
formulation to find a thermal property minimizing 
the difference between the measured and the 
calculated temperatures at pre-specified spatial 
and temporal points. For example, Huang et al. 
[5] used a conjugate gradient method with an 
adjoint equation and Yang [8] applied a 
sensitivity method after the approximation of the 
thermal conductivity as a linear combination of 
known functions with unknown coefficients. The 
solution procedure is usually comprised of the 
forward problem stage to find the temperature 
profile with the assumed thermal properties and 
the inverse problem stage to update the unknown 
thermal properties to minimize the 
aforementioned difference and these stages are 
repeated until convergence [3-8]. In the forward 
stage, solving the heat conduction equation in the 
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form of a partial differential equation may be 
substituted with solving the algebraic energy 
balance equation derived on the basis of the 
integration approach [4,9]. In contrast to the 
above iterative methods, some investigators 
attempted non-iterative approaches with the aid of 
the Kirchhoff transformation [10] to linearize the 
nonlinear heat conduction equation or the direct 
integration approach [11]. 

One of major difficulties in solving these 
IHCPs is that, due to the ill-posed nature of the 
problem, small noise in the measured 
temperatures may cause the solution diverged or 
large numbers of iterations are needed for 
convergence. Hence, the iterative regularization to 
mitigate the ill-posedness should be required and 
it would be noteworthy to mention that this issue 
is intensively dealt with by Alifanov et al. [1]. 

For determining good initial guesses to start 
the inverse solutions prior to the iterative 
optimization procedure to estimate the thermal 
properties, Huang and Özişik [2,4] proposed a 
direct integration approach. With their initial 
guesses obtained within about 20% error, they 
could enhance the iterative IHCP solution 
performance. In order to estimate the temperature-
dependent thermal conductivity in a transient heat 
conduction medium [9,11] and the time-
dependent boundary heat flux [12], Kim et al. 
formulated an integral balance equation for the 
heat conduction with the approximation of the 
spatial temperature profile as a third-order 
polynomial with four unknown coefficients that 
could be expressed in terms of two heat fluxes 
imposed and two temperatures measured at both 
boundaries. Also, this direct integration approach 
was applied to estimate the temperature 
dependent thermal conductivity and volumetric 
heat capacity simultaneously [13], and 
successfully compared with the Levenberg-
Marquardt method, one of conventional iterative 
methods, of Huang and Özişik [4]. 

In this paper, we employ the integral approach 
proposed by Kim et al. [9] to the estimation of the 
temperature-dependent thermal conductivity since 
it has the advantages over Huang and Özişik’s 
method [2,4]. The former uses the data measured 
at the boundary only while in the latter interior 
sensors to measure internal temperatures were 
inevitable. Furthermore, the present method 
solves the algebraic equations derived from the 
integral heat conduction equation rather than the 

partial differential equation for the heat 
conduction.  

According to numerical experiments for small 
Fourier numbers which may be the measure of the 
ratio of the temperature-wave penetration depth to 
the system dimension, however, the approximate 
spatial temperature distribution of the third-order 
polynomial used in the integral approach of Kim 
et al. [9] deviates from the true distribution, 
although for large Fourier numbers, e.g. for 

1~>Fo , the third-order polynomial is a good 
approximation. In consequence, the previous 
approach should require long measuring time to 
keep the Fourier number sufficiently large. This 
works intends to improve the integral approach to 
extend its applicability to the situations with 
smaller Fourier numbers. We approximate the 
spatial temperature distribution as a fourth-order 
polynomial with unknown coefficients, which 
satisfy four known boundary data (two prescribed 
heat fluxes and two measured temperatures). 
Additional constraint is considered to determine 
five unknown coefficients from the energy 
conservation. 

In illustration of the performance of the 
proposed method, we introduce several examples, 
in which the thermal conductivity varies linearly 
or quasi-linearly with temperature. Also, a 
statistical analysis is carried out to show the 
confidence bounds in the estimation with noisy 
data since the inverse solution tends to very 
sensitive to the measurement error. 
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Fig. 1. Description of problem domain. 
 
 
MATHEMATICAL MODEL 

In a one-dimensional homogeneous heat 
conduction medium as shown in Figure 1, let us 
consider a problem to determine the temperature-
dependent thermal conductivity, )(Tk  where the 
heat capacity per unit volume, C , is a known 
constant. It is assumed that the domain is bounded 
on the left end by a heated wall and on the right 
by an insulated wall. The heat flux into the left 
wall is set to a constant, Lq . The transient heat 
conduction is governed by 
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which is subject to the initial and boundary 
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For the simplicity, the initial temperature 
distribution is assumed to be zero. It is assumed 
that two temperature sensors are installed at both 
ends. The measured temperatures will be time-
dependent: 
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We consider the thermal conductivity that varies 
linearly with respect to temperature: 
 

TkkTk 10)( += .      (5) 
 
Now, the IHCP to estimate the temperature-
dependent thermal properties is converted into a 
parameter identification problem to determine the 
coefficients 0k  and 1k  only with the boundary 
information from Eqs. (3) and (4). We apply the 
integral approach for the estimation of )(Tk .  

In order to apply the direct integration 
approach that does not solve the partial 
differential equation for the heat conduction, Eq. 
(1), to the present inverse analysis, Eq. (1) is 
integrated with respect to spatial and time 
coordinates: 
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where )(xw is a pre-determined weighting 
function. If the temperature distribution is known, 
Eq. (6) constructs a relation the unknown 
coefficients  0k  and 1k  should satisfy. Or, if the 
temperature distribution can be approximated in 
terms of the unknown coefficients only without 
introducing additional unknowns, Eq. (6) can still 

describe the relationship between known 
parameters and the unknown  0k  and 1k .  

Recalling the initial and boundary conditions 
considered in this study, one can expect that the 
temperature should be monotonically decreasing 
or increasing as the spatial coordinate according 
to the sign of heat flux, Lq . Hence, we can 
simply approximate the temperature distribution 
as a polynomial with time dependent coefficients: 

 

∑
=








≅
N

n

n

n l
xtaxtT

0
)(),( .     (7) 

 
where N  is the order of the approximated 
temperature distribution. Since we have two 
applied boundary heat fluxes and two measured 
boundary temperatures, N  may be set to be 3, 
which was used by Kim et al. for the estimation 
of the temperature-dependent thermal 
conductivity [9]. The coefficients will be 
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where 
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In order to appreciate the approximation of a 
third-order polynomial, consider a heat 
conduction problem with constant thermal 
properties. The heat conduction equation will be 
rewritten as  
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where lx /=ξ  is the dimensionless length, 

lCtk 00 /=τ  so called Fourier number, and 
lqTk L/0=θ  the dimensionless temperature. The 

subscript ‘0’ denotes reference value. As can be 
seen in Fig. 2, the third-order approximation 
seems to be quite good for large Fourier numbers, 
e.g. τ >0.1, although for small Fourier numbers 
the approximate deviates from the true 
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distribution. As the Fourier number is smaller, the 
deviation will be more pronounced. It is likely, of 
course, that for non-linear heat conduction 
problems the deviation may be magnified. Hence, 
it is expected that the previous integral approach 
employing the third-order approximation should 
require a slow heating (small Lq  and long 
measuring time) to keep the Fourier number 
sufficiently large.  
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Fig. 2. Approximated tmeprature distribution with 

a third-order polynomial for a linear heat 
conduction problem. 

 
 

Recalling the energy balance, in fact, we can 
use one more constraint to approximate the 
temperature distribution. The energy balance 
corresponds to the case of )(xw =1 in Eq. (6): 
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or from initial and boundary conditions we have 
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With this additional constraint, we can 
approximate the spatial temperature distribution 
as a fourth-order polynomial ( N =4) and the 
coefficients will read 
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Figure 3 illustrates the approximated temperature 
distribution with a fourth-order polynomial and 
the comparison shows the improvement in the 
deviation from the true distribution. 
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Fig. 3. Approximated tmeprature distribution with 

a fourth-order polynomial for a linear heat 
conduction problem. 

 
 
Hence, we can expect that the fourth-order 
approximation may generate more favorable 
results in the estimation of the unknown 
coefficients, that is the temperature-dependent 
thermal conductivity, especially for smaller 
Fourier numbers.  

In order to construct a functional the unknown 
coefficient should satisfy, we set the weighting 
function to xxw −=1)(  and each side of Eq. (6) 
becomes  
 



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

dxTxCdxdt
t
TCxtLHS ll t

∫∫ ∫ −=
∂
∂−= 00 0 )1()1()( , 

 (13a) 

[ ]dtTkkTkkltq

dxdt
x
TTk

x
xtRHS

t
RRLLL

t l

∫

∫ ∫

+−+−=










∂
∂

∂
∂−=

0 00

0 0

)()(
2
1

)()1()(

     (13b) 
 
respectively. In this, the weighting function of  

xxw −=1)(  has been chosen since the largest 
temperature increase occurs at the heated wall. 
Due to the linear approximation of thermal 
properties, we have  
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When obtaining Eq. (13b), the above relation is 
used. 

With the approximated temperature 
distributions Eqs. (8) and (12), the weighted 
integrals of the temperature distribution will be 
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for a third-order approximation, and 
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for a forth-order approximation. 

In practice, boundary temperatures will be 
measured discretely at predetermined temporal 
coordinates mt , Mm ,,2,1 m= . That is, M is 
number of measurements. Now, the present 
inverse problem turns into a problem to find the 
coefficients 0k  and 1k  minimizing the following 
functional: 
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To find a coefficient vector 
[ ]Tkk 10=α which minimizes Φ , we use usual 

Newton-Raphson method. It should be noted that 
according to our numerical experiments the 
present optimization problem doen not require 
any regularization to mitigate the ill-posedness 
that is commonly encountered in inverse solutions. 
 
NUMERICAL EXPERIMENTS 

For the evaluation of the proposed algorithm, 
we consider several examples, in which the 
thermal conductivity varies with the temperature 
linearly or quasi-linearly. First, two examples of 
linearly varying thermal conductivity are 
examined. The thickness of the specimen is set to 
l =0.03m. 

 
Example 1: 

C =4,000 [kJ/m3-�] 
TTk 07.05.75)( −=  [W/m-�] 

 
Example 2: 

C =4,000 [kJ/m3-�� 
5.75)200(07.0)( +−= TTk  [W/m-�] 

 
In this, the temperature has a unit of �. The first  
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Fig. 4. Estimated thermal conductivities for 

Examples 1 and 2. 
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example, in fact, corresponds to iron specimen 
and the second is chosen arbitrarily to simulate a 
thermal conductivity increasing with temperature. 
The total temperature measuring time, endt , is 
taken as 900s. It is assumed that 100 temperature 
readings with an even measurement time interval 
are performed. The heat flux at the left boundary 
is assumed to be 000,25=Lq W/m2. The 
reconstructed thermal conductivity variations are 
plotted in Fig. 4, which shows an excellent 
performance of the present integral approach. It 
also means that both temperature distributions, 
namely third- and fourth-order polynomials, can 
approximate the true distribution quite reasonably. 
Although the result with the fourth-order 
approximation is more favorable, the difference 
does not seem to be significant. 

Now, let’s consider the third example in 
which the thermal conductivity somewhat 
deviates from the linear dependency on 
temperature. This example may be more probable 
in reality. 
 
Example 3: 

C =1,740 [kJ/m3-K] 
2.1100,45)( −= TTk  [W/m-K] 

 
In this, the temperature is in K. The specimen of 
thickness l =0.05m is initially in thermal 
equilibrium at 300K, and the left wall is suddenly  
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Fig. 5. Estimated thermal conductivities for 

Example 3 (σ =0.5�). 

heated by a constant heat flux of Lq =4,000W/m2, 
while the right wall is insulated. Total 
measurement time is 5,000s and the specimen will 
be heated up to about 525K. The temperature 
readings at both ends are taken every 2.5s. These 
thermal properties are for gallium arsenide. The 
ineluctability of the measurement error could 
make the inverse solution diverged. Hence, 
thestatistical analysis is important to validate the 
performance as well as to determine the accuracy 
of the developed inverse algorithm. In the 
numerical experimentation, we impose a Gaussian 
noise on the measured temperature  

 
ωσ+= exactmeasured TT    (17) 

 
where σ  is the standard deviation of the 
measured temperatures and ω  is a random 
number which lies within the specified confidence 
bounds. If we use 99% confidence bounds, the 
random number ranges -2.567<ω <2.567; 
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The standard deviation is set to σ =0.5�. To 
obtain statistical data 100 numerical experiments 
are conducted. The comparison between the 
estimated and the exact thermal conductivities is 
made in Fig. 5, which shows an excellent 
agreement. The estimated thermal conductivity 
with the third-order polynomial approximation 
shown in Fig. 5 is obtained under error-free 
condition.  

Considering the fitness of the approximated 
temperature distribution to the exact distribution 
and recalling the comparisons made in Figs. 2 and 
3, it would be illustrative to examine the Fourier 
number based on the reference thermal properties 
of each example, which is defined as 

 

2
0

0

lC
tkFo =     (25) 

 
In this, the subscript ‘0’ means the reference value 
and for the above three examples we set the 
reference values as 0k = 70W/m-K and 

0C =4,000 kJ/m3-K for Examples 1 and 2 and 
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0k = 30W/m-K and 0C =2,000 kJ/m3-K for 
Example 3. 

For the first two examples, endt =900s 
corresponds to Fourier number of 17. In Example 
3, the Fourier number for endt =5,000s is 30. All 
the examples have sufficiently large Fourier 
numbers, which will be favorable in fitting the 
approximated distribution to the exact one. In 
order to evaluate the effect of the Fourier number 
on performance of the present approach, hence, 
we introduce other experimental conditions with 
different heat flux and different measuring time 
for the same specimen of Example 3.  
 
Case 1: Lq =40kW/m2, endt =500s, Fo =3 
Case 2: Lq =80kW/m2, endt =250s, Fo =1.5 
Case 3: Lq =200kW/m2, endt =100s, Fo =0.6 
 
As the Fourier number decreases, the 
predictability of the integral approach based on 
the third-order polynomial approximation of the 
temperature distribution is degraded as shown in 
Fig. 6. As for Case 3 of Fo =0.6, the estimated 
thermal conductivity is far from the true one, 
while the present approach with the fourth-order 
polynomial approximation can estimate the 
unknown coefficients quite reasonably. From the 
results of Case 3 given in Fig. 6c, we can find the 
deviation of the estimated thermal conductivity 
from the exact one is magnified in the region of 
lower temperatures, which corresponds to earlier 
time (i.e. smaller Fourier number). Such deviation 
can be explained by the fact that for smaller 
Fourier numbers the approximation of the 
temperature distribution may show poor 
agreements with the exact temperature 
distribution, as shown in Fig. 3. It would be 
intersting that the error bound narrows as the 
Fourier number decreses. The errors of the 
estimated thermal conductivity are summarized in 
Fig. 7. In this, the error is defined as: 
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CONCLUSIONS 
An integral approach to estimate temperature-
dependent thermal conductivity is proposed and 
examined for a one-dimensional non-linear heat  
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Fig. 6. Effect of Fourier number on the estimated 

results (σ =0.5�). 
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Fig. 7. Relative errors of estimated thermal 

conductivity as Fourier number. 
 
 
conduction medium. The spatial temperature 
distribution is approximated as a third-order and a  
fourth-order polynomial. The unknown 
coefficients of the third-order polynomial are 
expressed in terms of the prescribed boundary 
heat fluxes and the measured boundary, and for 
the fourth-order an additional constraint of the 
energy balance is considered. With using the 
fourth-order polynomial approximation, we can 
improve the performance of the present integral 
approach. 
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